Summer Review Packet for AP CALCULUS

Directions: Complete the following problems. All work must be shown to receive full credit.

Simplify by factoring

$$1.\ 2x^{-\frac{1}{2}} + 3x^{\frac{5}{2}}$$

2.
$$3(x+1)^{\frac{1}{2}}(2x-3)^{\frac{5}{2}}+7(x+1)^{\frac{3}{2}}(2x-3)^{\frac{3}{2}}$$

3.
$$(x+2)^{\frac{1}{2}} + x(x+2)^{-\frac{1}{2}}$$

4.
$$(2x-5)^{-\frac{3}{4}}(x+2)-(2x-5)^{\frac{1}{4}}$$

Exponential and Logarithm Practice

Solve each equation. Use laws of logarithms.

$$1. \quad \log 5x = \log(2x + 9)$$

3.
$$10^{2x} = 46$$

4.
$$3e^{5x} = 18$$

5.
$$\log(x + 21) + \log x = 2$$

6.
$$-6\log_3(x-3) = -24$$

Graphs, Transformations and Domain

1. Match the name & equation to the graph.

v.

b.
$$y = x^3$$

$$\mathbf{c}.\ y = \sqrt[3]{x}$$

d.
$$y = \frac{1}{x}$$

e.
$$y = x^2$$

f.

$$y = \sqrt{x}$$

$$y = \sqrt{x}$$

g. $y = |x|$

h.
$$y = \frac{1}{x^2}$$

ii.

iii.

iv.

vii.

2. Match the description of the transformation with the equation.

Description	Function
1. Shift to the left 1 unit	a. y = f(-x)
2. Shift to the right 1 unit	b. $y = 2f(x)$
3. Shift up 1 unit	c. $y = f(x+1)$
4. Shift down 1 unit	$d. y = \frac{1}{2}f(x)$
5. Makes the graph wider	e. $y = f(x) + 1$
6. Makes the graph more narrow	f. $y = f(x - 1)$
7. Reflect over the x-axis	g. $y = f(x) - 1$
8. Reflect over the y-axis	h. y = -f(x)

a.
$$f(x) = \ln x$$

b.
$$f(x) = \sqrt{9 - 2x}$$

$$c. \quad g(x) = \frac{x}{x^2 - 16}$$

$$d. \quad h(x) = \frac{5}{\sqrt{x^2 - 4}}$$

Limits:

Find each of the following limits analytically:

1.
$$\lim_{x \to 5} \frac{2x^2 - 5x - 25}{x - 5}$$

2.
$$\lim_{x \to 16} \frac{x - 16}{\sqrt{x} - 4}$$

3.
$$\lim_{x \to 0} \frac{\frac{1}{x+4} - \frac{1}{4}}{x}$$

4.
$$\lim_{x \to \infty} \frac{3x^2}{4x^2 + 2x - 1}$$

5. Discuss the continuity of $(x) = \begin{cases} 6+3x & x < -2 \\ x^2-4 & x \ge -2 \end{cases}$. (Use the definition of continuity)

- 6. Given the function f defined by $f(x) = -\frac{x-1}{x^2 + 2x 3}$
 - a. For what values of x is f(x) discontinuous. Classify the discontinuity as removable, infinite, or jump.

b. At each point of discontinuity found in part (a) determine whether f(x) has a limit and, if so, give the value of the limit.

Derivative Practice

Find the first derivative for each of the following.

1.
$$y = \sin^3(5x^2)$$

2.
$$y = (x^2 + 3)(x^3 + 4)$$

3.
$$v = 3x^{\frac{1}{2}} - 5\sqrt[3]{x} + \pi$$

4.
$$f(x) = \frac{2x}{\sqrt{3+x^2}}$$

5.
$$y = (2x^3 + 1)^2 (x - 5)^4$$

6. $f(x) = -2\cos x + \tan^2 x$

$$7. \quad y = x^2 \sin x$$

$$8. \quad y = \left(\frac{2x}{1-x}\right)^4$$

Tangent Lines

1. Write an equation of the line tangent to the graph of $y = \cos(2x)$ at $x = \frac{\pi}{4}$.

2. Find f(4) and f'(4) if the tangent line to the graph of f(x) at x = 4 has equation y = 3x - 14.

Calculate the second derivative.

1.
$$y = 12x^3 - 5x^2 + 3x$$

2.
$$y = \sqrt{2x + 3}$$

Compute
$$\frac{dy}{dx}$$
: $y = xy^2 + 2x^2$

$$y = xy^2 + 2x^2$$

Find all critical points of the function.

1.
$$f(x) = x^3 - \frac{9}{2}x^2 - 54x + 2$$

Find the absolute extrema of the function on the given interval.

1.
$$y = 2x^2 - 4x + 2$$
 [0, 3]

Verify Rolle's Theorem for the given interval

1.
$$f(x) = x + x^{-1}$$
, $\left[\frac{1}{2}, 2\right]$

Find a point c satisfying the conclusion of the Mean Value Theorem for the given function and interval.

1.
$$y = \sqrt{x}$$
, [4,9]

Find the intervals of increase and decrease and relative extrema for the given function.

1.
$$y = x^3 - 6x^2$$

Determine the intervals on which the function is concave up or down and find the points of inflection.

1.
$$y = x - 2\cos x$$
 $0 \le x \le 2\pi$

2.
$$y = 4x^5 - 5x^4$$

Related Rates:

1. Water pours into a conical tank of height 10ft and diameter of 8ft at a rate of $10 \, ft^3/\text{min}$. How fast is the water level rising when it is 5 ft high?

Graphing and Derivatives

1. Each graph in Figure 2 shows the graph of a function f(x) and its derivative f'(x). Determine which is the function and which is the derivative.

FIGURE 2 Graph of f(x).

- 2. The figure shows the graph of the derivative, f'(x) on $[0, \infty]$.
 - a. Locate the points of inflection of f(x) and the points where the relative maxima and minima occur.

- b. Determine the intervals on which f(x) has the following properties:
 - i. Increasing
 - ii. Decreasing
 - iii. Concave up
 - iv. Concave Down

- 3. Match the description of f(x) with the graph of its derivative f'(x) in figure 1.
 - a. f(x) is increasing and concave up.
 - b. f(x) is decreasing and concave up.
 - c. f(x) is increasing and concave down.

FIGURE 1 Graphs of the derivative.

PROBLEM SOLVING STRATEGY: Optimization

The strategy consists of two Big Stages. The first does not involve Calculus at all; the second is identical to what you did for max/min problems.

Stage I: Develop the function.

Your first job is to develop a function that represents the quantity you want to optimize. It can depend on only *one* variable. The steps:

- 1. **Draw a picture** of the physical situation.
 - Also note any physical restrictions determined by the physical situation.
- 2. **Write an equation** that relates the quantity you want to optimize in terms of the relevant variables.
- 3. If necessary, use other given information to **rewrite your equation in terms of a single** variable.

Stage II: Maximize or minimize the function.

You now have a standard max/min problem to solve.

- 4. **Take the derivative** of your equation with respect to your single variable. Then find the critical points.
- 5. Determine the maxima and minima as necessary.

Remember to **check the endpoints** if there are any.

- 6. **Justify your maxima or minima** either by reasoning about the physical situation, or with the first derivative test, or with the second derivative test.
- 7. Finally, **check to make sure you have answered the question as asked**: Re-read the problem and verify that you are providing the value(s) requested: an *x* or *y* value; or coordinates; or a maximum area; or a shortest time; whatever was asked.

1.	An open rectangular box with square base is to be made from 48 ft. ² of material. What dimensions will result in a box with the largest possible volume?
2.	A gardener wants to make a rectangular enclosure using a wall as one side and 120 m of fencing for the other three sides. Find the dimensions of the garden so the gardener maximizes the area.