Directions: Complete the following problems. All work must be shown to receive full credit.

Simplify by factoring

1. $2 x^{-\frac{1}{2}}+3 x^{\frac{5}{2}}$
2. $3(x+1)^{\frac{1}{2}}(2 x-3)^{\frac{5}{2}}+7(x+1)^{\frac{3}{2}}(2 x-3)^{\frac{3}{2}}$
3. $(x+2)^{1 / 2}+x(x+2)^{-1 / 2}$
4. $(2 x-5)^{-3 / 4}(x+2)-(2 x-5)^{1 / 4}$

Exponential and Logarithm Practice

Solve each equation. Use laws of logarithms.

1. $\log 5 x=\log (2 x+9)$
2. $10^{2 x}=46$
3. $3 e^{5 x}=18$
4. $\log (x+21)+\log x=2$
5. $-6 \log _{3}(x-3)=-24$
6. Match the name \& equation to the graph.
i.
ii.
iii.
iv.
a. $y=x$
b. $y=x^{3}$
c. $y=\sqrt[3]{x}$
d. $y=\frac{1}{x}$
e. $y=x^{2}$
f.
$y=\sqrt{x}$
g. $y=|x|$
h. $y=\frac{1}{x^{2}}$
v.

vii.

viii.

7. Match the description of the transformation with the equation.

8. Find the domain of each function.
a. $f(x)=\ln x$
b. $f(x)=\sqrt{9-2 x}$
c. $g(x)=\frac{x}{x^{2}-16}$
d. $h(x)=\frac{5}{\sqrt{x^{2}-4}}$

Limits:

Find each of the following limits analytically:

1. $\lim _{x \rightarrow 5} \frac{2 x^{2}-5 x-25}{x-5}$
2. $\lim _{x \rightarrow 16} \frac{x-16}{\sqrt{x}-4}$
3. $\lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}$
4. $\lim _{x \rightarrow \infty} \frac{3 x^{2}}{4 x^{2}+2 x-1}$
5. Discuss the continuity of $(x)=\left\{\begin{array}{ll}6+3 x & x<-2 \\ x^{2}-4 & x \geq-2\end{array}\right.$. (Use the definition of continuity)
6. Given the function f defined by $f(x)=-\frac{x-1}{x^{2}+2 x-3}$
a. For what values of \boldsymbol{x} is $f(x)$ discontinuous. Classify the discontinuity as removable, infinite, or jump.
b. At each point of discontinuity found in part (a) determine whether $f(x)$ has a limit and, if so, give the value of the limit.

Derivative Practice
Find the first derivative for each of the following.

1. $y=\sin ^{3}\left(5 x^{2}\right)$
2. $y=\left(x^{2}+3\right)\left(x^{3}+4\right)$
3. $y=3 x^{\frac{1}{2}}-5 \sqrt[3]{x}+\pi$
4. $f(x)=\frac{2 x}{\sqrt{3+x^{2}}}$
5. $y=\left(2 x^{3}+1\right)^{2}(x-5)^{4}$
6. $f(x)=-2 \cos x+\tan ^{2} x$
7. $y=x^{2} \sin x$
8. $y=\left(\frac{2 x}{1-x}\right)^{4}$

Tangent Lines

1. Write an equation of the line tangent to the graph of $y=\cos (2 x)$ at $x=\frac{\pi}{4}$.
2. Find $f(\mathbf{4})$ and $f^{\prime}(\mathbf{4})$ if the tangent line to the graph of $f(x)$ at $x=\mathbf{4}$ has equation $y=\mathbf{3} x-\mathbf{1 4}$.

Calculate the second derivative.

1. $y=12 x^{3}-5 x^{2}+3 x$
2. $y=\sqrt{2 x+3}$

Compute $\frac{d y}{d x}: \quad y=x y^{2}+2 x^{2}$

Find all critical points of the function.

1. $f(x)=x^{3}-\frac{\mathbf{9}}{\mathbf{2}} x^{2}-\mathbf{5 4} x+\mathbf{2}$

Find the absolute extrema of the function on the given interval.

1. $y=2 x^{2}-4 x+2 \quad[0,3]$

Verify Rolle's Theorem for the given interval

1. $f(x)=x+x^{-1}$,
$\left[\frac{1}{2}, 2\right]$

Find a point c satisfying the conclusion of the Mean Value Theorem for the given function and interval.

1. $y=\sqrt{x}, \quad[4,9]$

Find the intervals of increase and decrease and relative extrema for the given function.

1. $y=x^{3}-6 x^{2}$

Determine the intervals on which the function is concave up or down and find the points of inflection.

1. $y=x-2 \cos x \quad 0 \leq x \leq 2 \pi$
2. $y=4 x^{5}-5 x^{4}$

Related Rates:

1. Water pours into a conical tank of height 10 ft and diameter of 8 ft at a rate of $\mathbf{1 0} \mathrm{ft}^{\mathbf{3}} / \mathrm{min}$. How fast is the water level rising when it is 5 ft high?

Graphing and Derivatives

1. Each graph in Figure 2 shows the graph of a function $f(x)$ and its derivative $f^{\prime}(x)$. Determine which is the function and which is the derivative.

FIGURE 2 Graph of $f\left(x^{\prime}\right)$.
2. The figure shows the graph of the derivative, $f^{\prime}(x)$ on $[0, \infty]$.
a. Locate the points of inflection of $f(x)$ and the points where the relative maxima and minima occur.
b. Determine the intervals on which $f(x)$ has the following properties:
i. Increasing
ii. Decreasing
iii. Concave up
iv. Concave Down

3. Match the description of $f(x)$ with the graph of its derivative $f^{\prime}(x)$ in figure 1 .
a. $f(x)$ is increasing and concave up.
b. $\quad f(x)$ is decreasing and concave up.
c. $f(x)$ is increasing and concave down.

FIGURE 1 Graphs of the derivative.

PROBLEM SOLVING STRATEGY: Optimization

The strategy consists of two Big Stages. The first does not involve Calculus at all; the second is identical to what you did for max/min problems.

Stage I: Develop the function.

Your first job is to develop a function that represents the quantity you want to optimize. It can depend on only one variable. The steps:

1. Draw a picture of the physical situation.

Also note any physical restrictions determined by the physical situation.
2. Write an equation that relates the quantity you want to optimize in terms of the relevant variables.
3. If necessary, use other given information to rewrite your equation in terms of a single variable.

Stage II: Maximize or minimize the function.

You now have a standard max/min problem to solve.
4. Take the derivative of your equation with respect to your single variable. Then find the critical points.
5. Determine the maxima and minima as necessary.

Remember to check the endpoints if there are any.
6. Justify your maxima or minima either by reasoning about the physical situation, or with the first derivative test, or with the second derivative test.
7. Finally, check to make sure you have answered the question as asked: Re-read the problem and verify that you are providing the value(s) requested: an x or y value; or coordinates; or a maximum area; or a shortest time; whatever was asked.

1. An open rectangular box with square base is to be made from 48 ft . ${ }^{2}$ of material. What dimensions will result in a box with the largest possible volume?
2. A gardener wants to make a rectangular enclosure using a wall as one side and 120 m of fencing for the other three sides. Find the dimensions of the garden so the gardener maximizes the area.
